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Abstract

In this paper we relate several objects from quite diverse ar-
eas of mathematics. Closed meanders are the configurations which
arise when one or several disjoint closed Jordan curves in the plane
intersect the horizontal axis transversely. The question of their
connectivity also arises when evaluating traces in Temperley-Lieb
algebras. The variant of open meanders is closely related to the de-
tailed dynamics of Sturm global attractors, i.e. the global attractors
of parabolic PDEs in one space dimension; see the groundbreaking
work of Fusco and Rocha [FuRo91]. Cartesian billiards have their
corners located on the integer Cartesian grid with corner angles
of ±90 degrees. Billiard paths are at angles of ±45 degrees with
the boundaries and reflect at half-integer coordinates. We indicate
and explore some close connections between these seemingly quite
different objects.

1 Introduction

A simple closed meander is a closed differentiable Jordan curve which is
transverse, i.e. nowhere tangent, to the horizontal x-axis in the Euclidean
plane; see [Ar88, ArVi89] and figure 1.2(a). A closed multi-meander, just
called a meander henceforth, consists of finitely many mutually disjoint
simple closed meanders. See figure 1.3(a). We assume each Jordan com-
ponent to intersect the axis at least twice; a Jordan component with exactly
two intersections is called a circle. Open meanders are a variant where the
Jordan curves are not assumed to be closed, but of finite and transverse
intersection with the x-axis.

The intricacies of meander patterns have fascinated mankind, ever since
prehistoric times. As examples we mention snake patterns on palaeolithic
bracelets, ∼ 15,000 B.C. [Gi98], Babylonian omina based on meander pat-
terns of entrails, ∼ 1,200 B.C. [KB70], see figure 1.1, or labyrinthine me-
anders found in the so-called Nestor Palace, Pylos, ∼ 1,200 B.C., and in
the floor design of the Cathedral of Chartres, ∼ 1,200 A.D. [Sa03], alike.

Merging the two loose ends of a simple open meander into the two loose
ends of the x-axis, respectively, we have a special case of a closed curve
with finitely many transverse self-intersections: the Gauss word problem
[Ga1840]; see also section 5.2. More recently, the combinatorics of stamp
(now: protein) folding, relations to Termperley-Lieb algebras and statis-
tical physics, and singularity theory have been pursued. See for example
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the inspiring surveys of Di Francesco et al [dFGG97, dFG05], and section
5.3.

Simple open meanders also arise in descriptions of global attractors of
parabolic reaction-advection-diffusion equations of the form

(1.1) ut = uxx + f(x, u, ux) ,

say on the unit interval 0 < x < 1 with Neumann boundary conditions
ux = 0 at x = 0, 1. Groundbreaking work by Fusco and Rocha [FuRo91]
has introduced a permutation characterization of meanders arising from
the shooting approach to the equilibrium problem

(1.2) 0 = uxx + f(x, u, ux) .

Indeed, the horizontal u-axis in the (u, ux) phase space of (1.2) corre-
sponds to Neumann boundary conditions, say at x = 1. See also (5.2),
(5.3) below for further detail. The meander curve arises as the image of
this axis, starting from “time” x = 0, when arriving at x = 1 by the
ODE evolution of (1.2). Intersections of the meander with the horizon-
tal u-axis, at x = 1, indeed correspond to equilibria of (1.1). Trans-
verse, i.e. nontangent, intersections correspond to hyperbolic equilibria.
See [BrCh84, Ro91, Ro94, Ro07, SmTrWa80] for a detailed account, and

Figure 1.1: (a) Meandering patterns on a palaeolithic bracelet dated 15,000
to 18,000 B.C.; see [Gi98], p. 26, Abb. 38. (b) Meandering patterns of
entrails of animal sacrifice, Babylonian 1,200 B.C.; see [KB70], p. 214,
Abb. 90.
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Figure 1.2: (a) A simple, i.e. connected, closed rainbow meander. (b)
A corresponding transitive plane Cartesian billiard. The numbered dots
in (a) mark intersection points with the x-axis and, in (b), corresponding
reflection points on the boundary of the associated billiard.

Figure 1.3: (a) A closed rainbow (multi-) meander with two connected
components; one distinguished by dashed arches. (b) A corresponding non-
transitive plane Cartesian billiard; one flight path distinguished by dashed
lines.
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[FiSc02, FiRo09] for survey information.

A Cartesian billiard consists of a compact region B in the Euclidean xy-
plane with polygonal boundary such that each side of the polygon is either
horizontal or vertical, and of integer length. See figures 1.2(b), 1.3(b). The
corners of the polygon can then be assumed to lie on the standard lattice
Z2 = Z×Z. As paths in the Cartesian billiard we consider piecewise linear
flights in B of the form

(1.3) y ± x = c ∈ Z + 1
2
.

Subdividing the integer polygon sides into segments of length 1, we thus see
how reflection occurs at the half-integer midpoints of the integer boundary
segments.

If all flights (1.3) in a Cartesian billiard B define a single closed path, then
we call B transitive; see for example figure 1.2(b) above. A rectangle B
is transitive if, and only if, its sides p, q are co-prime; see section 6. For
an example of a nontransitive billiard see figure 1.3(b) and, according to
section 6, any p× q rectangle with sides which are not co-prime.

In the present paper we explore how meanders are related to Cartesian bil-
liards. In particular we investigate several constructions relating meanders
to billiards in such a way that simple meanders correspond to transitive
billiards.

The remaining part of this introduction is organized as follows. We begin
with some background and perspective on meanders in subsection 1.1.
Cartesian billiards are formalized, and rotated by 45◦, in 1.2. We formulate
our main results in subsection 1.3 and outline the remaining paper in 1.4.

1.1 Meanders

We collect some terminology and notation concerning meanders, i.e. closed
multimeanders M with simple closed Jordan components Mi.

Like each component Mi, the meander M possesses an even number 2N
of intersections with the horizontal x-axis. Indeed each intersection is
transverse, i.e. nontangential, and hence switches sides with respect to the
axis. Up to homeomorphism we may assume the intersection points to be
at x = 1, . . . , 2N , and the meander curves Mi to consist of 2N hemicircle
arches with the intersection points as end points: N arches above and N
below the axis.

Each of the N arches ak above the axis can also be viewed as a matching
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pair ( ) of an opening parenthesis “ ( ” and a closing one “ ) ”. The usual
rules for opening and closing parentheses are equivalent to the mutual non-
intersection of the upper arches aj. The number of such arch configurations
ak above the axis is therefore the N -th Catalan number

(1.4) CN =
1

N + 1

(
2N

N

)
.

Similarly, the N arches bk below the axis possess CN configurations, and
we obtain a total of CN

2 different meanders, for 2N intersections.

We recall that a circle is a configuration with one upper arch a matching
one lower arch b: we obtain a meander component Mi which possesses only
2 intersections with the axis. The only meander with N = 1, for example,
consists of a single circle. We call a meander circle-free, if it does not
contain any circle component.

Following [dFGG97], we call a meander a rainbow if all lower arches bk
are nested. In other words the k-th lower arch bk joins the intersection
points k and 2N + 1 − k, for k = 1, . . . , N . We call a rainbow meander
cleaved if none of the upper arches ak joins any intersection point i ≤ N to
any intersection point j > N . Obviously N is even, for cleaved rainbows.
Moreover all cleaved rainbows are circle - free.

1.2 Cartesian billiards

For technical convenience in the proofs below we rotate our previous de-
scription of a plane Cartesian billiard B by 45◦. This makes the billiard
flights (1.3) horizontal and vertical, respectively, but produces polygonal
boundaries of slopes ±1 in the xy-plane.

We describe the billiard boundary by the graphs of two continuous func-
tions: the upper boundary β+ and the lower boundary β−. Let N ≥ 2. We
require β±: [0, N ] → R to be piecewise linear, for noninteger arguments,
and to satisfy for all 0 < i < N

β+(0) = β−(0) = 0 ;(1.5)

β+(i) ≥ β−(i) ;(1.6)

β+(i) = β−(i) =⇒ β+(i± 1) 6= β−(i± 1) ;(1.7)

β+(i+ 1) = β+(i)± 1 and β−(i+ 1) = β−(i)± 1 ;(1.8)

β+(N) = β−(N) .(1.9)

Of course β± map integers, and only integers, to integers, by (1.8). Note
how the linear pieces of β± each have slopes ±1, by (1.8). Moreover, the
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Figure 1.4: (a) The simple closed meander M of figure 1.2(a). (b) A
transitive billiard B with boundaries β±, N = 5, and associated meander
M = Φ(B). Note how horizontal flights at half-integer constant y in B
correspond to the N = 5 upper arches in M , and vertical flights at half-
integer constant x correspond to the N = 5 lower rainbow arches.

upper and lower boundaries may touch, but only at isolated and integer
arguments; see (1.6), (1.7). For example β±(1) = ±1 and β+(N − 1) =
β−(N − 1) + 2. The billiard region B is the region between the boundaries
β±, i.e.

(1.10) B = {(x, y) | 0 ≤ x ≤ N, β−(x) ≤ y ≤ β+(x)} .

To describe the horizontal and vertical billiard flights between reflections
at the mid-segments of the boundary we adopt the simplifying notation

(1.11) n′ := n− 1
2

for any integer n. Then the reflection points of the midsegments are simply
the 2N points

(1.12) (i′, β+(i′)) and (i′, β−(i′))

for i = 1, . . . , N . Note that these 2N points are always distinct, because β±

touch each other only at some isolated and integer arguments. The flights
simply preserve the half-integer x- or y-value, respectively, and proceed to
the next boundary point, where the roles of fixed x or y are reserved.
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Figure 1.5: (a) The simple closed meander M of 1.3(a). (b) A non-
transitive billiard B with boundaries β±, N = 5 and associated meander
M = Φ(B). Horizontal/vertical flights at half-integer y/x in B again cor-
respond to the n = 5 upper/lower arches in M , respectively. One flight
path/meander component is distinguished by dashing.

1.3 Main results

In theorems 1.1 – 1.3 below, we formulate our main results on the corre-
spondence between closed meanders M and plane Cartesian billiards B.
The meanders M possess 2N intersection points with the horizontal x-
axis, as described in section 1.1. The billiards B are given by continuous
boundaries β±: [0, N ]→ R, as described in (1.5) – (1.9) of section 1.2.

Theorem 1.1.
Let N ≥ 2 and consider a plane Cartesian billiard B with boundary func-
tions β± satisfying properties (1.5) – (1.9) above.

Then B defines a unique associated closed multi-meander

(1.13) M = Φ(B)

of 2N intersection points with the horizontal axis. Moreover the associated
meander M is a rainbow meander and is circle-free.

We construct the meander map Φ in section 2, explicitly, and prove theo-
rem 1.1 there.

The remaining two main theorems show surjectivity of the map Φ onto the
set of closed circle-free (multi-)meanders with 2N intersection points.
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Theorem 1.2.
Let M be any closed cleaved rainbow (multi-)meander with 2N intersection
points.

Then there exists a plane Cartesian billiard B with boundary β± such that

(i) M = Φ(B) , and

(ii) β±(N) = 0 .

Theorem 1.3.
Conclusion (i) of the previous theorem holds, more generally, for any closed
circle-free rainbow (multi-)meander.

1.4 Outline

We prove theorem 1.m in section m + 1, for m = 1, 2, 3. The proof of
theorem 1.1 is by direct interpretation of the billiard paths: the 2N reflec-
tion points on the billiard boundary β± become the intersection points of
the meander M = Φ(B); horizontal flights correspond to the upper arches
and vertical flights correspond to lower arches in the bottom rainbow. The
proof of theorem 1.2 is by explicit construction of the boundary functions
β± from the opening and closing of upper parentheses in the cleaved rain-
bow meander. The more intricate proof of theorem 1.3 proceeds by induc-
tion, starting from a reduction of circle-free rainbow meanders to cleaved
rainbow meanders.

In section 5 we discuss several related constructions on meanders: opening,
closing, and conversions to rainbow type which do not affect connectivity.
Compactification to meanders on the 2-sphere provides a more embracing
view point to some of these constructions and to relations among closed
meanders. We also comment briefly on relations to Temperley-Lieb alge-
bras and, in particular, the relation between the Di Francesco trace and
rainbow meanders.

We conclude, in section 6, with an explicit discussion of some elementary
rainbow meanders, and a rather innocent-looking open question.
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tality at the São Carlos summer conferences of Universidade de São Paulo,
and at IMPA, Rio de Janeiro. The author Bernold Fiedler is also much
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2 Proof of theorem 1.1: from billiards to

rainbow meanders

In this section we prove theorem 1.1: given a plane Cartesian billiard B
we construct a meander M and thus define the meander map M = Φ(B)
of (1.13).

We recall that the billiard B is given by its continuous boundary functions
β± : [0, N ] → R, which satisfy the boundary properties (1.5) – (1.9). For
i = 1, . . . , N in (1.12) we label the 2N half-integer reflection points

(i′, β+(i′)) by m = i ∈ {1, . . . , N}, and

(i′, β−(i′)) by n = 2N + 1− i ∈ {N + 1, . . . , 2N} ,
(2.1)

clockwise along the billiard boundary.

To construct a meander from the vertical and horizontal billiard flights
through these reflection points, we consider vertical flights first. Let each
vertical flight x = const. = i′ ∈ Z + 1

2
between (i′, β+(i′)) and (i′, β−(i′))

define a lower arch between the labels m = i and n = 2N+1−i. Obviously
this defines N nested lower arches, as required in a rainbow.

To define the upper arches we consider a nonempty connected horizontal
flight interval y = const. ∈ Z+1

2
within the compact billiard regionB. Note

how the reflecting endpoints (i′1, β
ι1(i′1)) and (i′2, β

ι2(i′2)) may belong to the
same boundary graph, ι1 = ι2 ∈ {+,−}, or to opposite boundary graphs,
ι1 6= ι2. Nevertheless the horizontal flight defines an upper hemicircle arch
between the appropriate labels (2.1) of its reflecting endpoints.

It is already obvious that the resulting arch diagram is circle-free. Indeed
the y-coordinate along any vertical flight, at half-integer x-value, changes
strictly because β+ can touch β− only at integer arguments; see properties
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(1.6) – (1.8). Therefore there does not exist any upper arch, i.e. any
horizontal flight with constant y-coordinate, which could join the same
two reflection points.

Noting how upper and lower arches alternate, as do horizontal and vertical
flights in the billiard B, it only remains to show that the resulting upper
arches are disjoint. Then the constructed arch configuration M = Φ(B) is
a (multi-)meander, indeed, and the proof of theorem 1.1 will be complete.

We show that two distinct upper arches a, from A1 to A2 > A1, and â,
from Â1 to Â2, do not intersect. Without loss of generality we may assume
that the meander intersection Â1 is between A1 and A2 on the x-axis. We
have to show that Â2 is between A1 and A2, likewise. We identify the
four intersections with their corresponding reflection points on the clock-
wise boundary curve β = β+ ∪ β− of the billiard B. We open up β, and
B, slightly at touching point integers (i, β±(i)), 0 < i < N without ob-
structing any part of the billiard path. Let B̃ denote this slightly modified
billiard, now with closed Jordan curve boundary β̃. The unchanged hor-
izontal flights A1A2 and Â1Â2 in B̃ are disjoint, by construction: either
their half-integer y-values disagree, or else the flights belong to different
B̃-components of the same half-integer y-level. Consider the closed Jor-
dan curve which consists of the horizontal A1A2 flight and the piece of the
boundary circle β oriented clockwise from A1 to A2. Since Â1 lies on that
boundary piece, so does Â2, by the Jordan curve theorem in B̃ and because
the flights A1A2 and Â1Â2 do not intersect. This proves that M = Φ(B)
is a meander, and completes the proof of theorem 1.1.

3 Proof of theorem 1.2: from cleaved rain-

bow meanders to billiards

In this section we prove theorem 1.2: given a cleaved rainbow meander
M with 2N axis intersections, we explicitly construct a plane Cartesian
billiard B via its defining continuous boundary functions β± : [0, N ]→ R.
We construct β± with properties (1.5) – (1.9) and such that β±(N) = 0. In
terms of the meander map Φ of theorem 1.1, as constructed in the previous
section, we then show M = Φ(B) as required in theorem 1.2.

We define the upper billiard boundary β+ first. Let β+(0) = 0, as required

10



by (1.5). We satisfy (1.7) by the recursive definition

β+(i+ 1):=

β+(i) + 1, if “ ( ” at i+ 1 ;

β+(i)− 1, if “ ) ” at i+ 1 ;
(3.1)

for i = 0, . . . , N − 1. Here we have represented the upper arches of the
rainbow meander M to the left of the cleavage by parenthesis expressions
“(”, “)” at each intersection point i + 1 = 1, . . . , N , as in the Catalan
counting (1.4).

We use the upper arches to the right of the meander cleavage, right to left,
to define the lower boundary

β−(i+ 1):=

β−(i) + 1, if “ ( ” at 2N − i ;

β−(i)− 1, if “ ) ” at 2N − i ;
(3.2)

again for i = 0, . . . , N − 1 and starting at β−(0):=0. We complete the
definition of β± by linear interpolation.

We check properties (1.5) – (1.9) of β±. Obviously properties (1.5), (1.8)
hold by construction. Because M is cleaved at N , N + 1, all opened
parentheses at i = 1, . . . , N − 1 have been closed when we reach i = N .
Therefore (3.1) implies β+(N) = 0. Reading right to left, on the right of
the cleavage, analogously proves β−(N) = 0 by (3.2). This proves property
(1.9) and claim (ii) of theorem 1.2. Since only open parentheses can close
we observe

(3.3) β+(i) ≥ 0 ≥ β−(i)

for all i = 0, . . . , N . This proves property (1.6). Moreover (1.8) and (3.3)
imply β+ > 0 and β− < 0 at integer neighbours of zeros of β±. This proves
property (1.7) and shows how the boundaries (3.1), (3.2) indeed define a
plane Cartesian billiard B.

It remains to show Φ(B) = M for the meander map Φ constructed in the
previous section. Since Φ(B) is always a rainbow, by construction, we only
have to address the upper part. Flipping the billiard B upside down, by
reflection through the x-axis, the roles of β± interchange and the meander
Φ(B) is reflected through the vertical axis x = N + 1

2
. Therefore it is

sufficient to consider the upper arches to the left of the cleavage of M , and
the horizontal flights 0 < y ∈ Z + 1

2
of the billiard B which only involve

the boundary β+.

Let j1j2 denote any upper arch of M to the left of the cleavage, 1 ≤ j1 <
j2 ≤ N . The corresponding parenthesis pair “ ( ” at j1 and “ ) ” at j2 then
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implies slope +1 of β+ at j′1 = j1 − 1
2

and slope −1 at j′2, by construction
(3.1). The fact that “ ) ” at j2 is the closing match of the parenthesis “ ( ”
opened at j1 implies β+(j′) > β+(j′1) = β+(j′2) for all j1 < j < j2, again by
(3.1). In other words, the unobstructed horizontal billiard flight between
the boundary reflection points (j′1, β

+(j′1)) and (j′2, β
+(j′2)) in B at half-

integer level y = β+(j′1) = β+(j′2) corresponds precisely to the upper arch
between the intersection points j1 and j2 in the meander M . This bijection
between the N/2 horizontal flights in B, at positive half-integer levels of
β+, and the upper arches of the meander M to the left of the cleavage
proves M = Φ(B) and completes the proof of theorem 1.2.

4 Proof of theorem 1.3: from circle-free rain-

bow meanders to billiards

In this section we prove theorem 1.3: given any circle-free rainbow (multi-)
meander M with 2N axis intersections, we recursively construct a plane
Cartesian billiard B such that M = Φ(B).

We proceed by reduction to a cleaved rainbow. Starting from the circle-
free non-cleaved rainbow M = M0 we construct rainbows M1,M2, . . . by
successively removing the topmost upper arch j1j2 across the cleavage. In
other words

(4.1) j1 ≤ N < j2

and j1 is minimal (and hence j2 maximal) among all arches j1j2 with this
property. Of course we also remove one arch from the lower rainbow, in
parallel. At each reduction step from Mm to Mm+1 we show that Mm+1 is
circle-free, if Mm was circle-free; see lemma 4.1 below. Moreover we show
that Mm = Φ(Bm) arises as the meander of a billiard, if Mm+1 = Φ(Bm+1)
does; see lemma 4.2 below. Since M0 is circle-free, the descent M0,M1, . . .
by lemma 4.1 cannot terminate at the empty meander but must terminate
at a cleaved rainbow meander Mn, as soon as all the n arches across the
“cleavage” N,N + 1 in M0 have been removed. Since Mn is a cleaved
rainbow, theorem 1.2 and the explicit construction in section 3 provide
a plane Cartesian billiard Bn such that Mn = Φ(Bn) is the associated
cleaved rainbow meander. By lemma 4.2 below we may then ascend back
to M = M0 = Φ(B0) by induction, and theorem 1.3 will be proved.

We only need to formulate lemmas 4.1 and 4.2 for a single reduction step,
say from M0 to M1. To fix notation we label the intersection points of the
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reduced meander M1 with the horizontal axis by 1, . . . , 2N , as usual. For
the extended meander M0 we append labels 0 and 2N + 1, symmetrically,
and denote the added upper arch by j1j2 as in (4.1), with 0 ≤ j1 ≤ N <
j2 ≤ 2N + 1.

Lemma 4.1.
If the extended rainbow meander M0 is circle-free, then so is the reduced
rainbow meander M1.

Proof.
We prove the contrapositive. Suppose the reduced rainbow M1 possesses
a circle, i.e. an upper arch k1k2 with k2 = 2N + 1 − k1. We claim the
extended rainbow M0 possesses the same circle.
Indeed we may fix notation such that k1 ≤ N < k2. Minimality (4.1) of
j1 in the added upper arch j1j2 of M0 implies j1 < k1 and j2 > k2. In
particular the upper arch k1k2 of the reduced rainbow M1 appears as an
upper arch in the extended rainbow M2 with the same labels. Therefore
the extended rainbow M0 possesses the same circle k1k2 and the lemma is
proved. ./

The converse of lemma 4.1 fails, of course: we may always add a circle by
a topmost upper arch j1 = 0, j2 = 2N + 1, in the extended meander M0.

Lemma 4.2.
Let the extended rainbow meander M0 be circle-free and assume that the
circle-free reduced rainbow meander M1 possesses a billiard representation
M1 = Φ(B1) by a plane Cartesian billiard B1.
Then the extended rainbow meander M0 also possesses a billiard represen-
tation M0 = Φ(B0) by a plane Cartesian billiard B0.

Proof.
We divide the proof into four steps. In a first step, we fix some notation
for the upper arches of the rainbow meanders M0, M1, and for the given
billiard B1 representing the reduced rainbow meander M1. In step 2 we
identify the topmost upper arches of M1 by their corresponding horizon-
tal flights in B1. We also focus on the most typical subcase of the actual
proof. Step 3 contains the crucial construction to insert a new topmost
upper arch a = j1j2, across the rainbow cleavage at N , N + 1, for the
extended rainbow M0 by inserting a new horizontal flight in B1. This will
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Figure 4.1: Extended rainbow meander M0 and reduced rainbow meander
M1. The dashed topmost upper arch a = j1j2 of M0 overarching the cleav-
age of the lower rainbow at N,N + 1 is removed in M1.

Figure 4.2: (a) Billiard representation Φ(B1) = M1 of the reduced rainbow
meander M1 of figure 4.1. (b) Billiard representation Φ(B0) = M0 for the
extended rainbow meander M0 of figure 4.1. Note the shift by (1,1) of the
billiard boundary B1, from Ci to Cm, to construct the part from Ĉi to Ĉm
of the extended billiard boundary B0 for the extended meander M .
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construct the billiards B0. In step 4 we check that B0 is indeed a plane
Cartesian billiard with Φ(B0) = M0, as claimed.

Step 1: Notation.

In figure 4.1 we have sketched the sequence of topmost upper arches
of the reduced rainbow meander M1 and the extended rainbow mean-
der M0. The topmost upper arches of M1 are labeled a1, . . . , an from
left to right; they correspond to outermost pairs of matching parenthe-
ses “ (. . . ) ”. The dashed additional arch a = j1j2 of M0 overarches
ai, . . . , am−1 with 1 ≤ i ≤ m ≤ n, so that the topmost upper arches of
M0 are a1, . . . , ai−1, a, am, . . . , an. The additional arch a is the unique top-
most upper arch of the extended rainbow meander M0 which overarches
the lower rainbow cleavage at positions N,N + 1.

In figure 4.2(a) we sketch one possible configuration of the boundaries β± of
the billiardB1 which represents the reduced rainbow meanderM1 = Φ(B1),
by assumption. We discuss the remaining cases in step 2. Specifically
we have assumed Ck > 0 to be the smallest positive integer such that
β+(Ck) = 0 and β+(Ck + 1) = −1. We have also assumed β−(x) ≤ 0 for
0 ≤ x ≤ Ck +1. The interval components of the horizontal flights at y = 1

2

in B1 are labeled a1, . . . , ak−1 from left to right. The analogous flights at
y = −1

2
are labeled ak, . . . , an, from right to left. In step 2 we will see how

a` labels corresponding topmost upper arches and horizontal flights in M1

and B1. Again we join the boundaries β = β+ ∪ β− in clockwise direction;
so that the path β starts from the origin in direction β+ and returns to the
origin after having traversed β−. In this order, we denote the end points
of flight a` by A`,1 < A`,2. Along the boundary path β = β+ ∪ β− we
have also labeled zeros by C1 = 0 < C2 < · · · < Ck, left to right, along
the path β+, and Ck > Ck+1 > · · · > Cn+1 = 0, right to left, along the
return path β−. The zeros at Ci and Cm of β± occur at x-values j1−1 and
2N − j2. They indicate where we plan to insert the additional horizontal
flight of the billiard B0 corresponding to the additional arch a = j1j2 of
the extended meander M0, in step 3.

Step 2: Topmost arches and dropped cases.

Let us first assume that the plane Cartesian billiard B1 with reduced rain-
bow meander M1 = Φ(B1) satisfies

(4.2) β+ ≥ 0 ≥ β− ,
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and hence in particular β+(N) = β−(N) = 0. Then horizontal flights at
any half-integer levels y ∈ Z+ 1

2
begin and terminate on β± for ±y > 0, but

never run between β+ and β−. Therefore (4.2) implies that the reduced
rainbow meander M1 is cleaved. Moreover, the flights with y = +1

2
provide

the topmost upper arches to the left of the cleavage at N,N+1, and y = −1
2

provides the topmost upper arches to the right. Indeed the upper arches
a1, a2, . . . start at the intersection A11 = 1 with the horizontal axis, which
corresponds to the billiard point (1′, β+(1′)) with 1′ = 1

2
and y = 1

2
. Along

β+ we successively run into subsequent flights at y = 1
2
, from ai−1 to ai,

because β+ = 0 at Ci. Along β−, a similar argument applies, down from
an, an−1, . . . at level y = −1

2
.

Let us next consider the case that β+ or β− do attain values where β+ < 0
or β− > 0. In figure 4.2(a) we have considered the case that β+ < 0 occurs
first, along the x-axis. In the opposite case β− > 0 the boundary at Ck
simply possesses positive slope and belongs to β−, already. In the following
we will suppress this analogous case, along with the cleaved meander case
(4.2) where Ck = N and Ak−1,2 belongs to β+ but Ak,1 belongs to β−. We
thus assume

β+(Ck + 1) = −1 , and

β+(x) ≥ 0 ≥ β−(x) for 0 ≤ x ≤ Ck .
(4.3)

To insert the dashed arch a = j1j2, when extending the meander M1 to
M0, we have to insert an additional half-integer reflection point near the
zeros Ci of β+, for j1, and Cm of β− for j2.

We first observe that Ci 6= Cm. Indeed Ci = Cm would imply that the
labels A`,κ satisfy

(4.4) Ai,1 = 2N + 1− Am−1,2 ,

and are hence positioned symmetrically to the cleavage of the lower rainbow
at N,N + 1. Therefore the arch a of M0 would belong to a circle, but M0

is assumed circle-free. This proves Ci 6= Cm.

It remains to consider the cases Ci > Cm and Ci < Cm. By reflection of
the billiards B0, B1 through the horizontal axis, and of the meanders M0,
M1 through the vertical axis at x = N + 1

2
, however, we may focus on the

case

(4.5) Ci < Cm
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of figure 4.2 for the remaining proof.

Step 3: Extending the billiard from B1 to B0.

In the previous step we have reduced the proof to the reduced meander
case M1 = Φ(B1) of figure 4.1 with the reduced billiard of figure 4.2(a). We
now keep the billiard boundary β+ fixed, from C1 = 0 to Ci, and we fix β−

from Cm to Cn+1 = 0. The remaining boundary part of β = β+ ∪ β− from
Ci to Cm we move by the vector (1, 1), i.e. one step to the right and one
step up. We interpolate the resulting gaps at Ci and Cm linearly, i.e. with
slope +1. See figure 4.2(b) for the resulting extension B0 of the billiard B1.

Step 4: Φ(B0) = M0.

It is straightforward to check properties (1.5) – (1.9) for the extension of
β± constructed above, either geometrically or algebraically, to see that
B0 is indeed a plane Cartesian billiard. Indeed, the partial shift by (1, 1)
preserves the closing properties (1.5), (1.9), the slope property (1.8), the
ordering (1.6), and does not introduce any new tangencies (1.7).

The horizontal flights in B1 are all preserved by the extension to B0, al-
though the half-integer y-levels increase by 1 in the shifted part. Check
the neighboring reflection points Ai−1,2 and Ai,1 of the newly inserted re-
flection point j1 at (Ci, 0) + 1

2
· (1, 1), and likewise of the neighbors Am−1,2,

Am,1 of j2 at (Cm, 0) + 1
2
· (1, 1), along the boundary β. We see how the

extended meander Φ(B0) only differs from M1 by a newly inserted upper
arch a = j1j2 overarching ai, . . . , am−1 from the end Ai−1,2 of ai−1 to the
beginning Am,1 of am. Therefore Φ(B0) = M0.

Up to the careful consideration of a few remaining special cases like m = k
or i = k, or the cleavage case Ck = N and the analogous case Ck ∈ β−, as
discussed in step 2, this completes the proof of the lemma, and of theorem
1.3. ./

5 Morphing meanders

In the previous sections we have investigated the correspondence between
circle-free rainbow meanders and their associated plane Cartesian billiards.
In the four subsections below we widen the scope of our results to include
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more general meander configurations. In subsection 5.1 we discuss the
relation between open and closed meanders, with an eye on the open con-
nected, i.e. simple, meanders which arise in parabolic PDEs of Sturm type;
see (1.2). In 5.2 we study closed meanders on the standard 2-sphere S2, the
one-point compactification of the Euclidean meander plane, to indicate the
resulting equivalences of closed meanders. The role of closed meanders in
Temperley-Lieb algebras is briefly sketched in 5.3, relating the connectivity
of rainbow meanders with Di Francescos’s notion of a trace in Temperley-
Lieb algebras. In subsection 5.4 we conclude with two constructions of
rainbow meanders, from general closed (multi-)meanders. Both construc-
tions preserve connectivity. This completes our objective of relating the
connected open meanders, as they arise in Sturmian parabolic PDEs, with
connectivity of cicle-free rainbow-meanders, traces in Temperley-Lieb al-
gebras, and transitivity of plane Cartesian billiards.

5.1 Opening and closing meanders and billiards

We begin with a PDE example from the class of global attractors of the
scalar parabolic equations

(5.1) ut = uxx + f(x, u, ux)

on the unit interval 0 < x < 1 under Neumann boundary conditions
ux = 0 at x = 0 and x = 1. Based on [FiRo96] the global attractor
sketched in figure 5.1(a) has been identified as one of sixteen genuinely
different examples with 9 hyperbolic equilibria in this class, see [Fi94].
The particular example does not arise for f = f(u); see [FiRoWo11].

In figure 5.1(a) we sketch the 9 hyperbolic equilibria v = v(x) of (5.1), i.e.
the solutions of the second order ODE

(5.2) 0 = vxx + f(x, v, vx) ,

again with Neumann boundary conditions vx = 0 at x = 0, 1. Each equi-
librium v is indicated by a dot, labeled 0, . . . , 8. The Morse indices i,
alias the unstable dimensions, alias the number of strictly positive Sturm-
Liouville eigenvalues of the linearization of (5.1) at v, are given by i = 0
for labels 0, 8 (stability); i = 1 for labels 1, 5, 7; and i = 2 for labels 2, 4,
6. Label 3 indicates the only 3-dimensionally unstable equilibrium, central
to the global attractor which is a closed 3-ball. For more details on the
(Schoenflies) sphere geometry in global attractors of (5.1) see [FiRo13].
In figure 5.1(a) we sketch the full attractor geometry by heteroclinic orbit
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Figure 5.1: (a) Sturm global attractor of PDE (5.1) with 9 hyperbolic equi-
libria v, labeled by 0, . . . , 8 = 2N . One-dimensional heteroclinic orbits
between equilibria of adjacent Morse index are indicated by arrows. (b)
Open meander, at x = 1, which leads to the 9 equilibrium solutions v by
shooting from the Neumann boundary condition at x = 0, see (5.2), (5.3).
(c) Closed meander which arises by replacing the dashed upper arch (0, 7),
in (b), with the new dashed upper arch (7, 8).

solutions u(t, x) → v±(x) of (5.1), which tend to different equilibria v± of
adjacent Morse indices, for t→ ±∞.

In figure 5.1(b) we sketch the shooting curve associated to the Neumann
boundary value problem (5.2). More precisely we rewrite (5.2) as a nonau-
tonomous first order system

vx = w

wx = −f(x, v, w)
(5.3)

with Neumann boundary values w = 0 at x = 0, 1. Solving (5.3) with the
v-axis {w = 0} as a set of initial conditions, at x = 0, we obtain an open
meander curve as in figure 5.1(b), at x = 1. Transverse intersections of
the open meander with the v-axis {w = 0} at x = 1 indicate hyperbolic
equilibria u(t, x) ≡ v(x) of (5.3). Obviously, the open meander will be
simple, i.e. connected, if we assume global solvability of (5.3) for initial
conditions w = 0 at x = 0, and all 0 ≤ x ≤ 1.

In figure 5.1(c) we sketch how to relate the open meander of figure 5.1(b) to
a closed meander. More generally consider any plane open (multi-)meander
M with exactly one unbounded component. Leaving the PDE notation of
(5.1) – (5.3) behind we return to calling the horizontal axis x, again, and
label the 2N + 1 transverse intersections by 0, . . . , 2N . We also assume
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the unbounded component of the meander M to cross from the lower to
the upper half plane at labels 0 and 2N , as indicated in figure 5.1(b). We
can then replace the topmost upper arch (0,m) of M by a new topmost
upper arch (m, 2N) to close the meander. We omit the intersection point
0 in the resulting closed meander M̃ . Alternatively we may also omit
2N and replace the lowest bottom arch (n, 2N) by a new lowest bottom
arch (0, n), instead. Either way, M gives rise to a total of two associated
closed meanders M̃ with 2N intersections and with the same number of
connected components as M . In particular simple meanders stay simple
under closing.

Conversely we may think of opening closed meanders M̃ on 1, . . . , 2N .
Suppose we aim for an open meander M with upward crossings of the un-
bounded ends at 0, 2N such that M̃ arises from M , in turn, as above. Then
we just have to replace the topmost upper arch (m, 2N) of M̃ by (0,m).
Similarly we can revert the closing of the lowest bottom arch (n, 2N) of
M to become an opening. In this way we can view opening and closing
as inverse constructions which preserve the number of connected compo-
nents. For a more general view point see section 5.2 on S2 compactified
meanders.

Of course we may consider other variants of opening and closing, as well.
If the unbounded ends cross downwards at 0, 2N , instead, we may flip the
above considerations through the x-axis. If the unbounded ends are in the
same half-plane we may just join them to form a new arch in that half-
plane, for closing. Uniqueness of inverse openings will be lost, in general.
If the unbounded ends are in opposite half-planes, but not crossing at
0, 2N , it may not be possible to close the meander 0, . . . , 2N with just 2N
crossings. Adding another crossing −1 or 2N + 1, however, a closing with
2N + 2 crossings is always possible.

Opening and closing plane Cartesian billiards is equally straightforward;
see figure 5.2. To accomodate unbounded meander ends, which enter the
upper half plane at 0, 2N , we attach a 1 × 1

2
rectangle R at the original

polygon edge interval of length 1 bisected by 2N . (We call the rectangle
1× 1

2
even though the (Euclidean) lengths of its sides require a suppressed

factor of
√

2. ) We relabel the new corners as 0 and 2N , respectively.
Since these are the only corners at half-integer levels of x, y, they mark the
start and end points of a billiard path which corresponds to the unbounded
component of the open meander; see figures 5.1(b) and 5.2(b).
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Figure 5.2: (a) Closed billiard corresponding to the closed cleaved rain-
bow meander of figure 5.1(c). (b) Open billiard corresponding to the open
meander of figure 5.1(b). Note the shaded new rectangle R attached to
the lower left. Only the new corners 0 and 8 = 2N of the new polygon
are placed at half-integer coordinates x, y and can therefore serve as the
starting and end point of the nonclosed billiard path which represents the
unbounded meander component.

5.2 Closed meanders on the 2-sphere

Consider k disjoint closed C1 Jordan curves J1, . . . , Jk on the standard 2-
sphere S2, and another closed C1 Jordan curve J0 which intersects J1, . . . , Jk
transversely. Without loss of generality we may assume J0 to be the ±90◦

meridian through the poles, after a diffeomorphism of S2. Moreover we
may assume the north pole to not coincide with any of the intersection
points 1, . . . , 2N . Upon standard stereographic projection to the Euclidean
plane, J0 becomes the x-axis and M = J1∪· · ·∪Jk becomes a closed plane
(multi-)meander with k connected components. Conversely any closed
plane meander M can be viewed in the one-point compactification S2 of
R2, in this way. Simple meanders, k = 1, arise from the mutual intersec-
tions of two transverse Jordan curves J0 and J1.

Around 1840 Gauss considered transverse self-intersections of a single closed
curve K in S2; see [Ga1840]. Label the self-intersections of K by “letters”
1, . . . , N ′. The Gauss word problem asks for the possible words, with each
letter appearing exactly twice, such that the letters appear in order as K
is traversed once. See [Ros99] for a contemporary account.

For example consider the two transverse Jordan curves J0 and J1 above,
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but assume they do intersect at the north pole. In the stereographic plane
this corresponds to an open meander J1 which crosses the horizontal axis J0

at 2N−1 remaining transverse intersections. Joining loose ends of J0, J1 in
one or the other way, we obtain a closed self-transverse curveK. The Gauss
word of K which determines the topology of self-intersection then lists all
N ′ = 2N−1 intersection letters, say, first in and then in a possibly different
but parity preserving permutation σ. This permutation σ is directly related
to the Fusco-Rocha permutation, or Sturm permutation, [FuRo91] which
has become of central importance for a combinatorial characterization of
Sturm global attractors of the PDE (5.1); see for example [FiRo96, FiRo99,
FiRo00, FiRoWo11] and the references there.

The S2 point of view suggests an equivalence relation on closed meanders
M = J1∪· · ·∪Jk as follows. We may place the north pole of S2 within any
of the 2N subintervals of the meridian J0 \M to obtain possibly different,
but equivalent, closed plane meanders M1, . . . ,M2N after stereographic
projection. Obviously this notion of equivalence preserves the number of
connected components.

For example consider a circle-free rainbow meander M1. Placing the north
pole in the cleavage interval (N,N + 1) of the rainbow produces another
circle-free rainbow meander M2. The associated billiards B1 and B2 are
related by plane rotation through 180◦ around the point 1

2
(N, β±(N)).

Placing the north pole at any of the intersection points 1, . . . , 2N instead,
an analogous construction applies to the open meanders as arising, e.g., in
the Sturm PDE problem (5.1). We have not even started to explore the
consequences of this equivalence on the level of global Sturm attractors.

Returning to the opening and closing of meanders as in figures 5.1(b),(c)
we now see how our constructions can be viewed on S2, if we identify the
points 0 and 2N and let them pass through north pole. Then closing open
meanders corresponds to one or the other unfolding of such a pole passage.

5.3 Temperley-Lieb algebras: traces and rainbows

Our brief exposition basically follows Di Francesco et al [dFGG97, dFG05];
see also [We95]. A Temperley-Lieb algebra TLn(τ) of order n with param-
eter τ is a matrix algebra with N generators 1 = e0, e1, . . . , eN−1 and the
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Figure 5.3: Diagram representations of Temperley-Lieb generators e0 = 1
and ei, for i = 1, . . . , N − 1.

relations

e2i = τei(5.4)

eiej = ejei(5.5)

eiei±1ei = ei(5.6)

for all meaningful nonadjacent i 6= j; see [TeLi71]. In theN -strand diagram
representation of Temperley-Lieb algebras TLN(τ) sketched in figure 5.3,
products are represented by (homotopy classes of) concatenations of n-
strand diagrams, left to right. Resulting interior cycles are eliminated to
be replaced by a prefactor of τ , each, in view of property (5.4). Properties
(5.5) and (5.6) are obviously satisfied by these N -strand diagrams.

Following [dFGG97], we define the trace of a monomial e = ei1 . . . eim ∈
TLN(τ) as follows. In the N -strand diagram of e, we close up matching
right and left ends of the same strand index. Let k′ denote the resulting
number of connected components and define the trace

(5.7) tr(e):=τ k
′
.

Note that some of the components may be interior to e, whereas 1 ≤ k ≤ k′

other components involve the exterior closing. See figure 5.4(a),(b) for an
illustration with N = 4, e:=e2e1e3 ∈ TL4(τ) and tr(e) = k = k′ = 1.

Figure 5.4(c) shows how the exterior connectivity k of e = e2e1e3 ∈ TL4(τ)
coincides with the connectivity of an equivalent rainbow meander. Indeed
the interior strands of e define the upper arches, and the exterior strands
define the lower rainbow, when we appropriately join the vertical left and
right boundaries of the strand diagram of e to become the horizontal x-axis
of the meander.

Conversely, we may pass from any 2N rainbow meander (c) to theN -strand
diagram of a (τ -reduced) monomial e ∈ TLN(τ) with k′ = k exterior com-
ponents. This relates the number of connected components of rainbow
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Figure 5.4: (a) Diagram representation of the 4-strand diagram e =
e2e1e3 ∈ TLN(τ), N = 4. (b) Homotopy equivalent diagram of e with
dashed exterior strands matching right and left ends of the same strand in-
dex. Note the number k = 1 of exterior connected components of the closed
diagram. (c) Joining the lower ends “o” of the vertical strand boundaries
of e, and opening the boundaries to become horizontal we obtain an equiv-
alent rainbow meander with 2N intersections and the same number k = 1
of exterior connected components as in (b).

meanders, alias plane Cartesian billiards, to traces in Temperley-Lieb al-
gebras.

5.4 Meanders and rainbows

Closed rainbow meanders M∗ are characterized by the nested arrangement
of all N lower arches (i, 2N + 1− i). We have seen how circle-free rainbow
meanders M∗ are equivalent to plane Cartesian billiards. The previous
subsection, on the other hand, has recalled how rainbow meanders M∗
relate to traces in Temperley-Lieb algebras TLN(τ). More precisely it is
the number k of connected components of the rainbow meander M∗ which
determines the trace and decides, in case M∗ is simple alias k = 1 alias
tr = τ , whether the Cartesian billiard is transitive.

Closing the simple open Sturm meanders M̃ of the PDE setting (5.1),
however, we mostly do not arrive at a closed rainbow meander M∗. There-
fore we discuss two constructions, in this subsection, which convert general
closed meanders M to closed rainbow meanders M∗ without changing the
connectivity k.

The first construction converts any closed meander M to a cleaved closed
rainbow M∗; in particular M∗ is circle - free. However, the number of
2N intersections of the original meander M with the horizontal x-axis is
doubled to 4N , for the cleaved rainbow M∗. See figure 5.5 for an example
with N = 4. In general the N upper arches (i, j) of M are kept unchanged
in M∗, for 1 ≤ i < j ≤ 2N , and are located to the left of the (2N, 2N + 1)
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Figure 5.5: (a) An original closed meander M with 2N = 8 intersections.
(b) The associated cleaved rainbow meander M∗ with 4N = 16 intersec-
tions. Note how upper arches (i, j) of M have been preserved. Lower arches
(i, j) of M have been converted to upper arches (4N + 1− i, 4N + 1− j).

cleavage of M∗. The N lower arches (i, j) of M , however, are converted to
upper arches (4N + 1 − i, 4N + 1 − j) to the right of the cleavage of M∗.
Contracting the nested lower rainbow arches of M∗ restores M . Therefore
M and M∗ possess the same number k of connected components.

The second construction attempts to reduce the number N∗ of arches in the
rainbow meander M∗ to become lower than the bound N∗ = 2N attained
in the first construction. We assume the original meander M is circle-free.
Let N∗ be maximal such that (N∗, N∗ + 1) is a lower arch of M . (We may
consider an upper arch, just as well, if we reflect M through the x-axis.) As
indicated in figure 5.6(a) we now replace the intersections 1, . . . , N∗ < 2N
by a wedge, say with vertex at the nonintersection point N∗ + 1

2
on the

x-axis. To arrive at the rainbow meander M∗ we open the wedge to a full
180◦, generating the N∗ < 2N nested lower arches of the rainbow M∗. We
preserve the upper and lower arches (i, j) of the original meander which
reside in 1, . . . , N∗ entirely. The upper and lower arches of M which share
an intersection point in N∗ + 1, . . . , 2N , however, are each merged into a
single upper arch of M∗.

More precisely we map an upper arch (i, j) of M with 1 ≤ i < j ≤ N∗ to
the same upper arch of M∗. A lower arch (i, j) of M in the same range
maps to the upper arch (2N∗ + 1− i, 2N∗ + 1− j) of M∗. Any remaining
upper arch (i, j1) of M has i ≤ N∗ < j1 ≤ 2N . It can be merged with
its lower counterpart (j, j1) of M which satisfies j ≤ N∗ < j1 ≤ 2N by
construction. Here we have used maximality of N∗ < 2N . The merger
provides an upper arch

(5.8) (i, 2N∗ + 1− j)
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Figure 5.6: (a) The original closed circle-free meander M with N = 4 of
figure 5.5(a), slightly opened at intersections 1, . . . , N∗ = 5 < 2N . Note
the lower rightmost innermost arch at (N∗, N∗ + 1). (b) The fully opened
rainbow meander M∗ with N∗ < 2N upper arches and 2N∗ < 4N intersec-
tions.

of M∗.

This second construction provides a circle-free rainbow meander M∗, with
N < N∗ < 2N arches and 2N∗ < 4N intersections, from a circle-free
rainbow meander M with N arches and 2N intersections. In fact our
construction only used that the arch (i, j1) of M is not part of a circle.
Contracting the lower wedge again and re-inserting the arches of M∗ across
its cleavage at (N∗, N∗+1) below, we again conclude that the original circle-
free meander M and the shortened rainbow M∗ possess the same number
k of connected components.

6 Examples: simplicity of some rainbow me-

anders

For positive integers p1, . . . , pn we define the closed rainbow meander M =
M(p1, . . . , pn) as follows. For any positive integer p we call a configuration
of p nested arches a rainbow of size p, or a p-rainbow. Then the upper
arches of the meander M = M(p1, . . . , pn) consist, left to right, of adjacent
rainbows of sizes p1, . . . , pn. The lower arches of the rainbow meander M
form a single rainbow, by definition, of size N = p1 + · · · + pn. Below we
discuss connectivity of such rainbow meanders M for n = 1, 2, 3. Already
the case n = 4 is open!

The case M = M(p1) of n = 1 and p1 = N is trivial: the meander M
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Figure 6.1: (a) Symmetrically cleaved rainbow meander M = M(p, p). (b)
Corresponding square billiard B = B(p, p) with p closed rectangular billiard
paths.

consists of p1 nested circles.

The case M = M(p, p) of n = 2 and p1 = p2 = p is a cleaved meander;
see figure 6.1(a). The associated Cartesian billiard B = B(p, p) is a p× p
square. Again, we call the square p× p although the (Euclidean) length of
its sides is

√
2p. The corners are at (0, 0), (±p, p), and (2p, 0); see figure

6.1(b). Obviously the cleaved rainbow meander M(p, p) has p connected
components. The p kidney shaped components are given by the rectangular
billiard paths starting with the p horizontal flight levels y = i′ = i − 1

2
in

the p× p square billiard B, for i = 1, . . . , p, respectively.

The general case M = M(p1, p2) of n = 2 is slightly more interesting; see
figure 6.2(a), (b). Without loss of generality assume p1 > p2; or else inter-
change p1 and p2 by flipping the billiard B through the horizontal x-axis.
For p1 > p2 the associated Cartesian billiard B = B(p1, p2) is a rectangle
with corners (0, 0), (p1, p1), (p2,−p2), and (p1 + p2, p1− p2); see figure 6.2.
We claim that the number k = k(p1, p2) of connected components of the
circle-free meander M = M(p1, p2) or, equivalently, the number of paths
in the Cartesian billiard B = B(p1, p2) at half-integer levels is given by

(6.1) k = k(p1, p2) = gcd(p1, p2) ,

where gcd denotes the greatest common divisor.

Proving (6.1) is particularly straightforward in the billiard setting of figure
6.2(b). Consider the shaded p2×p2 square Q to the lower left of the dashed
line from (2p2, 0) to (p2, p2) in the billiard rectangle B. As we have already
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Figure 6.2: Circle-free rainbow meander M = M(p1, p2) with p1 > p2, in
(a), and corresponding rectangular billiard B = B(p1, p2), in (b). Note the
shaded p2 × p2 square Q in the p1 × p2 rectangle B with the dashed line as
boundary.

seen in our discussion of the square billiard B(p, p), billiard paths inside the
square Q are p2 rectangles. Cutting off the p2×p2 square Q from the p1×p2

rectangle in fact leaves a (p1−p2)×p2 rectangle behind with the exact same
number and connectivity of paths as before. Instead of entering and leaving
the shaded p2×p2 square Q, we simply reflect paths at the new dashed line
boundary. Cutting off squares from the resulting rectangles repeatedly, in
this manner, leads to a q×q square. By the Euclidean Algorithm of division
with remainder, the square has side length q = gcd(p1, p2). By our study
of B(q, q), the original billiard B(p1, p2) and the original rainbow meander
M(p1, p2) must therefore have k = k(p1, p2) = q connected components,
i.e. as many as the reduced square B(q, q). This proves claim (6.1).

As a third example we consider the case M = M(p1, p2, p3) of n = 3 upper
rainbows. The symmetric case p1 = p3 with p1 +p2 connected components,
p2 of them circles, is not interesting. Without loss of generality we may
therefore assume p1 < p3. In particular, the meander M is circle-free. The
associated billiard B = B(p1, p2, p3) is L-shaped with the six corners 0,
(p1, p1), (p3,−p3), (2p1, 0), (2p1 +p2, p2), and (p1 +p2 +p3, p1 +p2−p3); see
figure 6.3. We claim that the number k = k(p1, p2, p3) of connected compo-
nents of the circle-free rainbow meanderM = M(p1, p2, p3) or, equivalently,
of the Cartesian billiard B = B(p1, p2, p3) is given by

(6.2) k = k(p1, p2, p3) = gcd(p2 + p1, p2 + p3) .

As with (6.1), we prove (6.2) in the billiard setting of figure 6.3(b). As
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Figure 6.3: Circle-free rainbow meander M = M(p1, p2, p3) with p1 < p3,
in (a), and corresponding L-shaped billiard B = B(p1, p2, p3), in (b). Note
the shaded p1 × p1 square Q in the left wing of B with the dashed line as
boundary.

in our proof of (6.1) we may cut the shaded p1 × p1 square Q off the left
wing along the dashed line from (−p1, p1) to (2p1, 0), without changing the
connectivity of the Cartesian billiard. The resulting reduced rectangle has
sides p3 − p1 and p1 + p2. Inserting (6.1) this implies

k(p1, p2, p3) = k(p3 − p1, p1 + p2) = gcd(p3 − p1, p1 + p2) =

= gcd(p2 + p1, p2 + p3) ,
(6.3)

and claim (6.2) is proved.

Reflecting the L-shaped billiard B(p1, p2, p3) through the wing boundaries
from 0 to (p1, p1) and from (2p1 + p2, p2) to (p1 + p2 + p3, p1 + p2 − p3)
repeatedly, by the way, we obtain a Cartesian version of a Sinai billiard:
a rectangular domain with a rectangular hole, on the integer lattice, and
with flight paths at ±45◦ angles to the boundary.

Of course it is tempting to extend the above elementary observations and
address connectivities k = k(p1, . . . , pn) involving more than n = 3 upper
rainbows – not to speak of the complications of less simple-minded nesting
of arches or parentheses. Looking into the case n = 4, quite a few geometric
reductions actually come to mind and many particular subcases are easily
settled. The complexities of the general case seem to be such, however,
that we are not able, as yet, to provide a simple formula analogous to (6.1),
(6.2), even for the case n = 4. And of course there are many further cases
to explore.

In summary we find it intriguing how many puzzles are still in store, even
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in a supposedly elementary subject like the combinatorics of Jordan curves
and billiards in the plane.
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